
Micro-Behavior Encoding for Session-based
Recommendation

Jiahao Yuan1, BWendi Ji1, Dell Zhang§2,3, Jinwei Pan1, and Xiaoling Wang1

1Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China
2Birkbeck, University of London, UK

3ByteDance AI Lab, London, UK
{jhyuan, jwpan}@stu.ecnu.edu.cn, {wdji, xlwang}@cs.ecnu.edu.cn, dell.z@ieee.org

Abstract—Session-based Recommendation (SR) aims to predict
the next item for recommendation based on previously recorded
sessions of user interaction. The majority of existing approaches
to SR focus on modeling the transition patterns of items. In
such models, the so-called micro-behaviors describing how the
user locates an item and carries out various activities on it
(e.g., click, add-to-cart, and read-comments), are simply ignored.
A few recent studies have tried to incorporate the sequential
patterns of micro-behaviors into SR models. However, those
sequential models still cannot effectively capture all the inherent
interdependencies between micro-behavior operations. In this
work, we aim to investigate the effects of the micro-behavior
information in SR systematically. Specifically, we identify two
different patterns of micro-behaviors: “sequential patterns” and
“dyadic relational patterns”. To build a unified model of user
micro-behaviors, we first devise a multigraph to aggregate the
sequential patterns from different items via a graph neural
network, and then utilize an extended self-attention network
to exploit the pair-wise relational patterns of micro-behaviors.
Extensive experiments on three public real-world datasets show
the superiority of the proposed approach over the state-of-the-
art baselines and confirm the usefulness of these two different
micro-behavior patterns for SR.

Index Terms—session-based recommendation, micro-behavior
modeling, graph neural networks, self-attention mechanism.

I. INTRODUCTION

Recommender systems are a subclass of information re-
trieval applications where the information need is typically
represented by not an explicit query but a user’s profile and
context [1]. The core functionality of such online systems is
to predict the rating or preference the users would give to
different items by analyzing their past behaviors. In many
commercial websites that employ recommender systems, the
sequence of a user’s interactions can be naturally segmented
into a number of sessions each of which occurs within a certain
period of time and reflects the user’s interest at that moment.
Due to user privacy concerns, real-life recommender systems
are often unable to identify each user and track their long-
term interests. However, users usually have a very specific
and clear short-term intention when they visit an e-commerce
or other online service websites [2]. Therefore, Session-based
Recommendation (SR) which aims to predict the next item

§Dell Zhang is currently on leave from Birkbeck, University of London
and working full-time for ByteDance AI Lab, London, UK.

for a user in the current session, has recently attracted a lot
of attention from Internet companies [3].

Most existing methods for SR focus on modeling the transi-
tion patterns of items within a session through techniques like
Markov chain [4], Recurrent Neural Network (RNN) [5], at-
tention mechanism [6], and Graph Neural Network (GNN) [7,
8, 9]. Although the field of SR has witnessed significant
progress in the last few years, it is still facing some challenging
problems. Firstly, those methods only analyze the sequence of
items in a session but discard the detailed operations carried
out by the user on each item. However, the sequence of
items, also known as macro-behaviors [10], could not paint the
complete picture. Compared with the coarse-grained sequence
of items, the fine-grained sequence of different operations
performed on each item should be able to reflect the user’s
intentions and preferences more precisely. In this paper, we
refer to such operations with respect to a particular item within
a session as micro-behaviors, and try to make effective use of
them for SR. Furthermore, although GNN-based methods have
achieved exciting results and offered a promising direction for
modeling the transition patterns of macro items, they cannot
incorporate multiple micro-operations of the same item with
their graph construction and information aggregation methods.
Secondly, to the best of our knowledge, a few recently emerged
studies attempting to incorporate micro-behaviors into SR all
just model the sequential pattern of micro-behaviors with
RNN [10, 11, 12]. However, micro-behaviors are often corre-
lated with each other, and it would be very difficult for RNN-
based sequential models to capture such interdependencies
beyond the immediate predecessor/successor relations. In our
opinion, it would be beneficial to analyze the relational pat-
terns of micro-behaviors in addition to the sequential patterns.

Fig. 1 shows an example with two imaginary users. At the
level of macro-behaviors, user 1 and user 2 are not distin-
guishable as they have exactly the same session: the sequence
of items are iPhone, MacBook, AirPods, Apple-Watch and
Magic-Keyboard. By contrast, at the level of micro-behaviors,
user 1 and user 2 look quite different. Firstly, the former was
probably buying computer hardware for her work since she
bought MacBook and Magic-Keyboard, while the latter might
be only interested in the products made by Apple Inc. Thus,
the micro-operations in different items can help to distinguish

ar
X

iv
:2

20
4.

02
00

2v
1

 [
cs

.I
R

]
 5

 A
pr

 2
02

2

Click SearchBuy Add-to-cart
Read

comments

User 1

User 2

Macro Interactions

Micro Operations

Fig. 1. Given the same item sequence with different operations, our model can make different predictions for the next item.

the intentions of the user within a session. Secondly, user
1 tends to read the customer comments before making a
purchase, while user 2 goes straightaway to place order. Such
micro-behavioral differences would not be easily captured by
a sequential model, but they could be explicitly modeled using
dyadic relational patterns 〈read-comments,purchase〉
and 〈click,purchase〉. In other words, dyadic relational
patterns may have more discriminative power than sequential
patterns for the purpose of SR.

According to the above observations, the sequential pat-
terns are reflected in the successive micro-operations of the
single item, which relate to users’ preference of the item.
The dyadic relational patterns, on the other hand, convey
the pair-wise semantics of micro-behaviors which contain
different meanings about the items. In this paper, we propose a
novel framework to Encode Micro-Behaviors in Session-based
Recommendation (named EMBSR1) to jointly learn those two
different patterns. Specifically, EMBSR captures the user’s in-
tention and preference in an interaction session by integrating
the sequential patterns with the (dyadic) relational patterns
of micro-behaviors, and thus achieves significant performance
gains in recommendation accuracy. Firstly, we propose a new
encoding scheme for converting a session into a multigraph
in order to incorporate micro-behavior in GNNs. The graph
construction is the premise of the proposed framework to
aggregate the information of micro-behaviors since a macro
item may correspond to multiple successive micro-operations.
Secondly, we employ Gated Recurrent Unit (GRU) [13] to
describe the sequential pattern for each single item, which
has aggregated micro-behavior information in iterations of
GNNs. Next, inspired by self-attention with relative position
representations [14], we develop an operation-aware self-
attention mechanism which incorporates the dyadic operation
representation into the self-attention network for exploiting the
pair-wise semantics of micro-behaviors. Finally, we combine
such different representations of the user’s interest with the
fusion gating mechanism to predict the next item.

1The implementation has been released at https://github.com/
SamHaoYuan/EMBSR

The main contributions of this paper are as follows.
• We consider a user’s interaction session as a fine-grained

sequence of micro-behaviors and discover two different
types of patterns (sequential and relational) for the mod-
eling of micro-behaviors in SR.

• We design a novel encoding scheme that transforms a
session into a directed multigraph and employ a novel
aggregation stage to incorporate the sequential patterns
in the graph using GRUs.

• We propose a novel operation-aware self-attention mech-
anism to encode the dyadic relations of micro-behaviors,
and combine the valuable information embedded in a
session’s sequential and relational patterns to enhance the
prediction of next item.

• We conduct extensive experiments on three public real-
world datasets to demonstrate that our proposed model
can outperform all the state-of-the-art baselines for SR
significantly.

II. PRELIMINARIES

In this section, we introduce the preliminary knowledge
about GNNs and give its message passing paradigm, and then
we formulate the problem to address in this paper.

A. Graph Neural Network

GNN generalizes traditional neural networks to graph for
capturing structural information. Take advantage of the pow-
erful modeling capabilities for nodes and edges, the task of
SR is formulated as the graph classification problem.

Let G(V, E) be a graph with nodes V and edges E , (u, e, v)
denote an edge e ∈ E where u ∈ V is the source node and
v ∈ V is the target node. Here we use a symbol e to distinguish
different edge from u → v. Let xv ∈ Rd1 , xu ∈ Rd1 denote
the representation of two nodes respectively, we ∈ Rd2 denote
the edge feature. Generally, the process of GNNs to learn node
embeddings in the l+1-th layer can be formulated as follows:

ml+1
e = fm(xlv, x

l
u, w

l
e), (u, e, v) ∈ E

al+1
e = fa({ml+1

e : (u, e, v) ∈ E})
xl+1
v = fu(xlv, a

l+1
e)

https://github.com/SamHaoYuan/EMBSR
https://github.com/SamHaoYuan/EMBSR

In the above equation, fm is the message function defined on
each edge to generate a message by using the edge feature and
its endpoint feature, andml+1

e denotes the message information
of this edge. fa is an aggregation function that aggregates
neighbors’ information of the node along edges, al+1

e denotes
the aggregated information of all edges of this node. Different
information can be considered here based on the incoming or
the outgoing edges of the node. Lastly, an update function fu
is applied to generate a new representation of the node, and
xl+1
v denotes the novel representation of the node v. After

information propagates for multiple layers, we can get a new
representation of each node (or edge sometimes) and use it in
the downstream task.

Note that all notations in this subsection are only used here
to explain the preliminary knowledge of GNN and may be
inconsistent with the following expression.

B. Problem Statement

Let V and O denote the set of distinct items involved
in all sessions and the set of distinct operations a user can
perform, respectively. Given the sequence of micro-behaviors
in a session, St = {s1, s2, ..., st}, where si is the i-th micro-
behavior of the user and t is the maximum length of the
session. Specifically, si = (vi, oi) is a tuple that combines
an item and its corresponding operations.

To capture the fine-grained preference for the item, we first
merge the successive micro-behaviors that characterize the
same item to get the chronological sequence of macro-items
Sv
t = {v1, v2, ..., vn} and its corresponding micro-operation

sequence So
t = {o1, o2, ..., on}, where n ≤ t denote the

length of the macro-item sequence. For each item vi ∈ Sv
t ,

its operation sequence is oi = {oi1, oi2, ..., oik}, because one
item usually has multiple corresponding operations. That is to
say, we treat the successive micro-behaviors of the same item
as a whole. The goal of the proposed model is to predict the
next macro-item vn+1. Noting that we do not directly predict
the next micro-behavior st+1 or its item vt+1, since the last
macro-item may also have multiple micro-behaviors. In other
words, there is a high probability of vt = vt+1, which leads
to information leakage.

To achieve this goal, the proposed model learns to generate
a session representation m based on the given session, and
uses it to calculate a score ŷi for each item v ∈ V . Finally,
the items of the top-K scores will be returned to the user
as recommendations. For clarity, Tab. I summarizes the main
notations and their meanings used in this paper.

III. RELATED WORK

A. Session-based Recommendation

Since the long-term user profile is unknown, the task of
SR is limited to the context within the sessions. Hence, for
conventional methods, simple matrix factorization [15, 16] and
Item-KNN [17] without considering the order of items are not
suitable for SR. Thus, FPMC [4] used tensor factorization that
combines Markov chain to simulate the sequential behavior

TABLE I
SUMMARY OF NOTATIONS

Notations Descriptions

V , O The item set and operation set

St, Sv
t , So

t the given session, the corresponding macro-item
sequence, the corresponding micro-operation
sequence

si, vi, oi the i-th micro-behavior, item, and operation of
the given session, where si = (vi, oi)

vi, oi, oij the i-th macro item, the micro-operation se-
quence of vi, the j-th micro-operation in oi

Gt,Vt, Et the directed multigraph, the node set, the edge
set

MV , MO embedding metrics of item and operation

MP , MR embedding metrics of position and dyadic rela-
tion

Su
t , ui the distinct item set of St, the distinct item in

St (it is also the node in the multigraph)

eui , eoi the embeddings of ui and oi

vs, eus the star node and its embedding

h̃i, h̃i
j , h̃o the hidden state of the operation oij , the se-

quential encoding of oi, the sequential pattern
encoding of the micro-operation in the given
session

ml
i+, ml

i−, ml
i the message for incoming edges, outgoing edges

and all edges of the node ui at layer l

Ein(i), Eout(i) the set of incoming edges and outgoing edges
of the node ui

hi, hf the hidden layer of GNN, the final representa-
tion of satellite nodes

Mst , rij , erij the relation matrix of the session St, the dyadic
relation index between oi and oj , the embed-
ding of the dyadic relation rij

Xt, xi, xs the input embeddings for the operation-aware
self-attention mechanism, the embedding of the
tuple si, the embedding of the star node

epi , eij the embedding of the i-th position, the interme-
diate value to measure the correlation between
xi and xj

zs, m the output of the operation-aware self-attention
mechanism, the final output of the proposed
approach

between two adjacent clicks. Kamehkhosh et al. [18] com-
bined Markov chain with association rules. Recently, methods
based on nearest-neighbors obtain competitive performance.
SKNN [19] is a session-based k-nearest-neighbors approach,
which considers the sessions that contain any item of the
current session as neighbors. STAN [20] is an extension
version that additionally considers other factors. However, this
kind of approach is generally limited to represent complex
dependencies.

Neural network methods are proposed to capture the dy-
namic preferences from user’s sequential behaviors, which
have gained momentum in SR. GRU4Rec [21] first introduced
GRU to model user sessions. GRU4Rec+ [22] proposed a data

augmentation method and took the changes in user behavior
over time into account. Moreover, NARM [5] proposed an
encoder-decoder architecture based on RNN and attention
mechanism. STAMP [6] used the attention mechanism to
capture both the users’ long-term and short-term interests.
Bert4Rec [23] employed the deep bidirectional self-attention
to identify the correlations of items. These attention-based
models effectively capture both the user’s general and current
interest. CSRM [24] and CoSAN [25] incorporates collabora-
tive neighborhood information into neural SR models.

Recently, GNNs have been applied to SR to capture the
complex transition patterns. SR-GNN [7] first introduced
a gated GNN into this task, which converts a session to
graph-structured data. Furthermore, GC-SAN [8] proposed
a graph contextualized self-attention model, which utilizes
both GNNs and the self-attention mechanism. FGNN [26]
replaced the gated GNN with multi-layered weighted graph
attention networks [27]. To capture the long-term dependen-
cies, LESSR [28] used an GAT layer to learn the global de-
pendency by propagating information along long-range edges,
and SGNN-HN [9] introduced a star GNN for the problem.
For global information, GCE-GNN [29] build a global graph
to learn the global-level item embeddings by modeling pair-
wise item-transitions over session, and DHCN [30] adopted a
dual channel hypergraph convolutional network.

To summarize, a majority of approaches for SR have fo-
cused on exploring the complex transition of macro-items and
neural methods, especially GNN-based methods, which show
promising potential to model dependencies of items. However,
they all neglect user micro-behaviors in sessions, which reveals
the fine-grained preferences or attitudes of the user. Compared
with these macro-behavior models, the proposed framework
investigates the effects of the micro-behavior information in
SR systematically and explores two different patterns of micro-
behaviors.

B. Micro-Behaviors in Recommendation

Micro-behaviors are also integrated in the task of conven-
tional recommendation (called multi-behavior-based recom-
mendation [31]), which aims to leverage the micro-behaviors
to improve the recommendation performance on the target
behavior (e.g. purchase).

Quadrana et al. [3] proposed behavioral factorization, which
extends the collective matrix factorization [32] to handle
different behaviors in online social network (comment, re-
share, and create-post). Liu et al. [33] employed behavior-
specific transition matrices in recurrent and time-aware Log-
BiLinear [34] model to capture the properties of different
types of behaviors. Wan and McAuley [35] utilized tensor de-
composition framework to model monotonic behavior chains
where user behaviors are supposed to follow the same chain.
Gao et al. [31] proposed to correlate the model prediction
of each behavior type in a cascaded way and trained the
whole model in a multi-task manner. Moreover, Lo et al. [36]
analyzed the purchasing behavior of users to determine short-
term and long-term signals in user behavior that indicate

higher purchase intent. Multi-behaviors are also considered
as features and extracted from user clickstreams to help
predict purchase [37, 38]. Furthermore, from the perspective
of learning, there are many works exploiting multi-behaviors
as auxiliary action for sampling [39, 40, 41]. However, these
works verify the effectiveness of multi-behaviors to help model
the target behavior in conventional recommendation scenarios
but have not explored the complex patterns in SR.

Recently, a few works have begun to take micro-behaviors
into consideration in SR. Zhou et al. [10] first adopted RNN
to model micro-behaviors, and Gu et al. [11] extended it
to a hierarchical architecture to distinguish the differences
between micro-operations and macro-items. These RNN-based
models ignore the different dependencies between items and
operations. To tackle this problem, MKM-SR [12] fed the
operation sequence and the item sequence of a session into
RNN and GNN, respectively. However, MKM-SR only con-
siders the transition of macro items in GNNs and cannot
incorporate the micro-behavior information in the iterative
process of GNNs. It treated items and operations separately
and only concatenated them for final session representations.
In addition, all those methods only consider the sequential
pattern of the micro-operation and are very difficult to capture
the interdependencies of dyadic relational patterns. In contrast,
our work devises a multigraph to aggregate the sequential
patterns and then utilizes an extended self-attention network
to exploit the pair-wise relational patterns of micro-behaviors.

IV. APPROACH
In this section, we present the proposed model in detail. We

first summarize the pipeline of the proposed model. Then we
describe the two major components of the proposed method
to encode sequential patterns and dyadic relational patterns
of micro-behaviors. Lastly, we introduce a prediction layer
to generate the session representation with a fusion gating
mechanism.

A. Model Overview
The framework of the proposed model is illustrated in

Fig 2. For an input session, we transform each micro-
behavior into item embedding, operation embedding, and
relation embedding. Then for encoding sequential patterns,
we convert the macro-item sequence of the input session
into a multigraph with a star node and use a GRU for the
micro-operation sequence to get the feature on edges. Here,
we learn a new item embedding for each macro-item by
the star graph. For encoding dyadic relational patterns, the
new item embeddings incorporating the relation embeddings
are fed into an operation-aware self-attention mechanism to
exploit the pair-wise semantics of micro-behaviors. Lastly, the
session is represented by combining a general preference and
a recent interest in the session with a fusion gating network
for generating the scores on all candidate items.

B. Encoding Sequential Patterns
Based on the basic principle of SR [3], the premise of

obtaining a session representation is to learn each object’s

… …

r12r11 …

… …

… …

…r21 …

rt1 rtt

r1t

…

R
elation m

atrix
…

SG
N

N
-1

SG
N

N
-L

…

H
ig

hw
ay N

etw
ork

L LayersStar Graph

xS

xt

…

xi

…

x2

x1

G
ate

�𝑦𝑦

Training
set

GRUV1 V2 V3 V2 V3 V4

m1 m2 m3 m4 m5 m6

zs

xt

Embedding
Module

Sequential Encoding Prediction
Module

GRU GRU GRU GRU GRU

o1 o1 o1o2 o2o1 o1 o1o3

v2 v3 v4v3v1 v2

Dyadic Encoding

zs

zt

…

zi

…

z2

z1

Operation
Embedding

Item
Embedding

Relation
Embedding

P

xS … xi … x2 x1xL

Softmax

Operation-aware Self Attention
V1

VSV2

V3 V4
m6m5

xi

Query 𝛼𝛼𝑖𝑖𝑖𝑖

Key Value

Fig. 2. Overview of the proposed EMBSR model.

o1 o1 o1o2 o2o1 o1 o1o3

v2 v3 v4v3v1 v2

v2 v3 v4v1

v2 v3 v4v1

1
2

5

3

4

o1 o1 o1o2 o2o1 o1 o1o3

v2 v3 v4v3v1 v2 v3v2 v3

𝑆𝑆

𝑆𝑆𝑣𝑣

𝑆𝑆𝑜𝑜

Fig. 3. Different way of graph construction. We use the second way that
transforming the session into a multigraph

embedding in the session. In the setting of this paper, the
object is the micro-behaviors, including items and operations.
Compared with the operation sequence of a session, the
transition pattern of the item sequence is more complex and
does not simply exhibit the sequential pattern [12]. Thus, we
adopt GNNs to model the macro-item sequence and aggregate
micro-operation information by GRU in it.

Next, we introduce how we convert the input session into a
multigraph and present how to propagate information between
the macro-items and micro-operations via the proposed model.

1) Graph Construction: We convert the macro-item se-
quence to a directed multigraph that preserves the edge
order. Specifically, For each macro-item sequence Sv

t =
{v1, v2, ..., vn}, we model it as a directed multigraph Gt =
(Vt, Et). In Gt, each node is the distinct item in Sv

t and each
directed edge (vi, vi+1) ∈ Et is the transition vi → vi+1 in
Sv
t . It is worth noting that the graph is a multigraph since there

may be multiple transitions between the same items. The edges
are ordered by the time of their occurrences in the session in
order to distinguish the micro-operation information that their
endpoints have at different times.

In Fig. 3, we use an example to illustrate the way of
converting an input session to a multigraph. For the in-
put session S, it has four different items {v1, v2, v3, v4} ∈
V and three different micro-operations {o1, o2, o3} ∈ O.
First of all, we merge the successive micro-behaviors with
the same item to get the macro-item sequence Sv =
{v1, v2, v3, v2, v3, v4} and its corresponding sequence list
So = {(o1), (o1), (o1), (o1, o2), (o1, o2, o3), (o1)}. Then we
convert Sv to a multigraph and record the order by giving
each edge an integer attribute to help propagate the micro-
operation information of endpoints. Since the same item has a
different micro-operation sequence on different positions, the
multigraph ensures that the neighbor nodes pass the different
message along edges based on the different micro-operation
sequences.

Inspired by [9], we add a star node to capture the long-range
information by propagating information from non-adjacent
items, which is vs in Fig. 2. For convenience, we call other
nodes from the macro-item sequence satellite node. The star
node has a bidirectional edge with each satellite node, but we
update it in different way from satellite nodes.

2) Initialization of Node Embedding: Before passing the
nodes into the proposed model, we construct an embedding
matrices MV ∈ R|V |×d for items, where d is the latent
dimension. We use Su

t = {u1, u2, ..., uc} to denote the distinct
items set in the input session St, where c is the number of

distinct items in St. Next, for each distinct item ui ∈ Su
t ,

we get its embeddings eui ∈ Rd by the lookup of the item
embedding matrix and use it as initial embedding of satellite
nodes in Gt. So the initial hidden layer h0 is:

h0 = {eu1
, eu2

, ..., euc
} (1)

As for the star node, we apply an average pooling on the
satellite nodes to get its initialization:

eus
=

1

c

c∑
i=1

eui
(2)

3) Sequential Information of Micro-Operation: For each
micro-operation oij ∈ So

t , we also construct an embedding
matrix MO ∈ R|O|×d and get the micro-operation embedding
eoij ∈ Rd by the lookup of MO. So for each item vi ∈ Sv

t ,
we have the representation of its micro-operation sequence oi

as {eoi1 , eoi2 , ..., eoik}
To capture the sequential pattern of the micro-behavior, we

apply RNN to the embedding of the micro-operation sequence.
To avoid the problem of gradient vanishing, we use GRU,
which is an improved variant of RNN. Then the j-th step of
the GRU is:

h̃ij = GRU(eoij , h̃
i
j−1; ΦGRU) (3)

where ΦGRU denotes all GRU parameters and h̃ij is the
hidden state of the operation oij . For each micro-operation
sequence oi ∈ So

t , we use h̃i = h̃ik to represent the sequential
information of it, where h̃ik is the last hidden state of GRU.
Thus, we obtain the learned embeddings as

h̃o = {h̃1, h̃2, ..., h̃n} (4)

where h̃o ∈ Rn×d denote the whole sequential pattern of the
micro-operation in the input session. Since the number of h̃o
is the same as the number of macro-item sequence, we can
match different sequential information for each node based on
the order of the edges.

4) Aggregation Stage: The aggregation state includes two
processes. The first process is to generate a message by the
message function for each edge. The other process is to
aggregate neighbors’ information of each node along its edges
by aggregation function. Our main idea for the information
propagation is to consider the micro-operation influence on
user’s preference of items. Thus, the same node will pass
the different messages along the different edges based on
its micro-operation sequence in that position. So the whole
process for each satellite node can be formulated as follow:

ml+1
i+ =f+m({eluj

, h̃j : (uj , ui) ∈ Ein(i)})
ml+1

i− =f−m({eluj
, h̃j : (ui, uj) ∈ Eout(i)})

(5)

where eluj
is the representation of the node uj at layer l, Ein(i)

and Eout(i) denote the set of incoming edges and outgoing
edges of the node ui respectively. The message functions f+m
and f−m are used to compute the message to be propagated

from the neighbor node along the incoming and outgoing
edges, which are defined as:

f+m(euj
, h̃j) = W+

m([euj
; h̃j]) + b+m

f−m(euj , h̃j) = W−m([euj ; h̃j]) + b−m
(6)

where W+
m ,W

−
m ∈ R2d×d and b+m, b

−
m ∈ Rd are learnable

parameters, [·] denote the concatenation operation. Hence, we
can obtain ml+1

i ∈ R|E(i)|×d to denote the message for all
edges of the node ui. Noting that we do not consider the
edge with the star node here to avoid destroying the structural
information of the original session. After that, we aggregate
messages of all edges for node ui by

al+1
i = [

|Ein(i)|∑
k=1

ml+1
i+,k;

|Eout(i)|∑
k=1

ml+1
i−,k] (7)

where ml+1
i,k ∈ Rd denotes the k-th element in ml+1

i and
al+1
i ∈ R2d denotes the aggregated information of ui.
5) Update Stage: The update stage is to update the node

feature by using the aggregation information for each node.
We feed al+1

i and the node ui’s previous embedding into the
gated GNN [42] as follows:

z̃i
l+1 = σ(Wza

l+1
i + Uze

l
ui

)

rl+1
i = σ(Wra

l+1
i + Ure

l
ui

)

ẽl+1
ui

= tanh(Wua
l+1
i + Uu(rl+1

i � elui
))

êl+1
ui

= (1− z̃il+1)� elui
+ z̃i

l+1 � ẽl+1
ui

(8)

where WZ ,Wr,Wu ∈ R2d×d and Uz, Ur, Uu ∈ Rd are
trainable parameters of the network. σ(·) denotes the sigmoid
function and � is the element-wise multiplication. In addition,
z̃i

l+1 and rl+1
i are update gate and reset gate respectively,

which controls how much information should be preserved or
updated between two layers. In this way, information from
satellite nodes can be propagated by the GNN.

Next, we consider the connection from the star node to
explicitly capture the overall information of the session. For
each satellite node, we adopt a gating network to decide how
much information should be propagated from the star node
and the adjacent nodes, which is as:

αl+1
i =

(Wq1ê
l+1
ui

)TWk1e
l
us√

d

el+1
ui

= (1− αl+1
i)êl+1

ui
+ αl+1

i elus

(9)

where Wq1,Wk1 ∈ Rd×d are both parameter matrices. This
gating network determines how to selectively integrate the
information from êl+1

ui
and the former star node elus

to generate
the new representation of satellite node ui.

For updating the star node, we use attention mechanism to
assign different weight to the satellite nodes by regarding the
star node as query:

βi = softmax(
(Wk2e

l+1
ui

)TWq2e
l
us√

d
)

el+1
us

=

ls∑
i=1

βie
l+1
ui

(10)

where Wq2,Wk2 ∈ Rd×d are the learnable parameters, βi is
the weight of the node ui. Moreover, we apply a highway
network [43] to selectively obtain information from the item
embeddings before and after the stacked GNN layers, which
is denoted as:

g = σ(Wg[h0;hlast])

hf = g � h0 + (1− g)� hlast
(11)

where Wg ∈ R2d×d is the trainable parameter. By this highway
network, we can obtain the final representation of satellite
nodes as hf and the corresponding star node elastus

(denoted as
eus

for brevity).

C. Encoding Dyadic Relational Patterns

To encode dyadic relation patterns of micro-behaviors and
generate the session representation, we should aggregate the
embedding of all micro-behaviors in the input session. In the
above GNNs, we have already integrated the sequential pattern
of the micro-operation into the representation of the items,
but the relational pattern of the micro-operation has still been
neglected. In this subsection, we introduce a method to encode
dyadic micro-operation and present a novel operation-aware
self-attention mechanism.

1) Dyadic Micro-Operation Encoding: In an attempt to
model the pairwise relations between all the operations in
the input session, we create a relation matrix of operation
MR ∈ R|O|2×d. Each vector with dimension d in MR rep-
resents a dyadic encoding of the operation pair. For example,
suppose that we have 10 different micro-operations, combin-
ing them in pairs, there will be 100 different couples, e.g.,
〈click,purchase〉, 〈click,read-comments〉. There-
fore, for the operation sequence Ot = {o1, o2, ..., ot} of the
session St, the relation matrix of it is:

MSt
=


r11 r12 . . . r1t
r21 r22 . . . r2t

...
...

. . .
...

rt1 rt2 . . . rtt


After retrieving the relation matrix MR, we get the embedding
erij ∈ Rd for rij ∈MSt

.
2) Operation-Aware Self-Attention Mechanism: To cap-

ture the dyadic information in micro-behaviors, we propose
an extension to self-attention, which incorporates the pair-
wise operation embedding in the sequence. Given the micro-
behavior session St, we use the embedding sequence Xt =
{x1, x2, ..., xt} as the input vectors, where xi ∈ Rd is the
representation for the tuple si = (vi, oi) ∈ St. It is calculated
by:

xi = evi
+ eoi . (12)

where evi ∈ Rd is the item embedding from the corresponding
satellite nodes hf ∈ Rl×d, eoi is the operation embedding by
lookup the matrix MO. Since the star node has fused the entire
session’s information in the GNNs, inspired by [44], we use

it as the representation of the target item and suppose that it
has the same micro-operation with the next item:

xs = eus
+ eot+1

(13)

where xs ∈ Rd can be used to denote the user’s global
preference and is concatenated on the end of the Xt.

Then we create a learn-able embedding matrix MP ∈ RL×d

for positional information in the self-attention mechanism. In
this layer, each output element, zi ∈ Rd, is computed by

zi =

t∑
j=1

αij(xj + erij + epj) (14)

where epj ∈ Rd is the positional embedding for the position j
in the session. αij is the attention weight, which is calculated
as:

αij =
exp(eij)∑t
k=1 exp(eik)

(15)

Furthermore, eij is the intermediate value, which is used to
measure the correlation between the pair of micro-behaviors.
It is computed as:

eij =
xiW

Q(xj + erij + epj
)

√
d

(16)

where WQ ∈ Rd×d is the input projection for the query, which
is used to make the representation more flexible. Compared
with the standard self-attention mechanism, we have different
query, key, and value vectors here. Essentially, the output has
incorporated the information of dyadic operations, which can
better reflect the intents and preferences of the user based on
micro-behavior patterns.

Then we apply Position-wise Feed-Forward Network to
endow the model with more non-linearity,

FFN(zi) = max(0, ziW1 + b1)W2 + b2 (17)

where W1,W2 ∈ Rd×d are the weight matrices and b1, b2 ∈
Rd are the bias vectors. After that, we add residual connec-
tions, layer normalization, and dropout mechanism as in the
basic self-attention model. Finally, we get the learned vector
zs as the representation of the user’s final global preference,
which corresponds to xs in the input.

D. Session Representation and Prediction

To obtain a session representation, we take into account
a user’s global preference and recent interest. For the recent
interest, we directly take the representation of the last micro-
behavior to denote it, i.e. xt in the equation 12. Then, we
concatenate these representation and apply a fusion gating
network for the final representation of the proposed model,

β = σ(Wm[zs;xt] + bm)

m = β � zs + (1− β)� xt
(18)

where m ∈ Rd denotes the final output of the proposed model,
Wm ∈ R2d×d is the weighting matrix, bm ∈ Rd is the bias

vector. Lastly, for each item vi ∈ V , we produce the prediction
score as follows:

m̂ = wkL2Norm(m), v̂i = L2Norm(vi)

ŷi = softmax(m̂T v̂i)
(19)

where vi is the initial embedding of the item i and ŷi
denotes the probability of the item in the candidate item set
I . L2Norm is the L2 Normalization function and wk is the
normalized weight. This weighted normalization [45] and the
Regularizing Softmax loss [46] make the training process more
stable and insensitive to hyper-parameters.

For training the model, we use cross-entropy as the opti-
mization objective to learn the parameters:

L = −
∑
i

yi log(ŷi) (20)

V. EXPERIMENTS

A. Settings

1) Datasets: We conduct experiments on three publicly
available real-world datasets. The first two datasets 2 are from
a large Chinese e-commerce site JD.com [11], and the other
is from the RecSys Challenge 2019 3:
• JD Datasets: The datasets contain the user interaction

sessions of online shopping in two product categories,
“Appliances” and “Computers”, respectively. There are
10 different types of micro-behavior operations in each of
them, such as “SearchList2Product”, “Detail comments”
and “Order”.

• Trivago Dataset: The dataset is provided by trivago 4,
which is a global hotel search platform focused on re-
shaping the way travelers search for and compare hotels.
It contains user actions about the hotel and specifies the
type of action that has been performed. We only use the
train set of this challenge and take 6 types of micro-
operations such as “interaction item image” and remove
the operation whose reference value is not the item, such
as “filter selection” and “search for destination”.

For a fair comparison, we follow the previous work [11] to
filter out the items with fewer than 50 occurrences in JD
datasets; use 70%, 10%, and 20% of sessions as the training,
validation, and testing set, respectively; and use the last item
in each session as the ground truth for our SR predictions. In
addition, we exclude the sessions consisting of only a single
item from training and testing [7]. For trivago dataset, the
only difference is that we filter out the items with fewer
than 5 occurrences. The statistics of these three datasets after
preprocessing are shown in Tab. II.

2) Baselines: To evaluate the effectiveness of our proposed
model, we compare it with the following state-of-the-art meth-
ods for SR. Those baselines are classified into two categories:
macro-behavior models that only utilize the sequences of items

2The full datasets are available at https://tinyurl.com/ybo8z4yz.
3http://www.recsyschallenge.com/2019/
4https://www.trivago.com/

TABLE II
STATISTICS OF THE DATASETS USED.

Datesets JD-Appliances JD-Computers Trivago

train 583,255 577,301 26,0877
validation 83,279 82,391 37,027
test 166,670 164,782 74,770
items 75,159 93,140 183,561
micro-behavior 32,736,184 24,245,132 5,726,369

for SR, and micro-behavior models that also take the detailed
operations on each item into consideration.

Macro-Behavior Models:

• S-POP [21, 47] simply recommends the most popular
items in the current session. It is an improved version of
the popularity-based method for SR.

• SKNN [19] is the session-based k-nearest-neighbors ap-
proach, which scores an item based on the similarity
between the target session and historical sessions.

• NARM [5] applies RNN and the attention mechanism to
capture the user’s main purpose.

• STAMP [6] is a short-term memory priority model,
which combines the user’s general interest and current
interest reflected by the last-click to generate recommen-
dation results

• SRGNN [7] is a session-based recommendation model
that utilizes a graph neural network to learn the item and
session representation

• GCSAN [8] models sessions as directed graphs and
makes recommendations with a self-attention network.

• BERT4Rec [23] uses deep bidirectional self-attention to
represent user macro-behaviors.

• SGNN-HN [9] considers long-distance relations between
items in a session by star graph neural network (SGNN)
and applies highway networks to deal with the overfitting
problem for SR.

Micro-Behavior Models:

• RIB [10] is the first paper that incorporates micro-
behaviors into SR by simply using a GRU.

• HUP [11] proposes a hierarchical RNN framework to har-
vest the sequential information of users’ micro-behaviors.

• MKM-SR [12] is the latest SR model that employs GNN
for item embedding and GRU for operation embedding;
the variant which does not include the auxiliary task of
knowledge embedding is used in our experiments since
we don’t have the knowledge graph of items.

3) Metrics: Following previous works [9, 11, 12], we adopt
two commonly used performance measures for SR — Hit Rate
(H) and Mean Reciprocal Rank (M) at top K — to evaluate
our proposed model EMBSR and the competing methods.

• H@K: It is the proportion of cases that the ground truth
is ranked amongst the top-K items.

H@k =
nhit
N

(21)

https://tinyurl.com/ybo8z4yz
http://www.recsyschallenge.com/2019/
https://www.trivago.com/

TABLE III
PERFORMANCES (%) OF ALL THE SR METHODS. THE HIGHEST SCORES ARE BOLDFACED; THE 2ND HIGHEST SCORES ARE UNDERLINED.

Datasets Metrics S-POP SKNN NARM STAMP SR-GNN GC-SAN BERT4Rec SGNN-HN RIB HUP MKM-SR EMBSR Imp.

Appliances

H@5 31.66 25.06 30.94 30.74 32.65 30.36 31.02 34.80 30.12 31.91 33.82 37.34 7.30%
H@10 42.45 36.96 42.69 42.10 43.80 42.02 42.67 47.07 40.84 43.39 45.02 49.57 5.31%
H@20 49.56 49.30 54.74 53.98 55.32 54.02 54.30 59.36 51.61 54.73 56.57 61.64 3.84%
M@5 17.29 13.15 17.90 18.21 19.63 17.83 16.96 21.00 16.97 17.83 20.73 23.58 12.29%
M@10 18.74 14.73 19.46 19.72 21.11 19.38 18.52 22.64 18.40 19.37 22.22 25.21 11.35%
M@20 19.25 15.59 20.30 20.55 21.91 20.22 19.33 23.49 19.15 20.16 23.03 26.06 10.94%

Computers

H@5 17.18 15.11 18.31 18.18 20.08 18.79 17.90 21.53 16.93 18.87 21.00 24.17 12.26%
H@10 24.82 23.56 28.14 26.97 29.11 28.75 26.79 32.01 24.56 27.62 30.21 34.75 8.56%
H@20 30.22 33.55 39.34 37.44 39.72 39.98 36.98 43.67 33.58 37.49 40.86 46.29 6.00%
M@5 9.45 7.89 9.40 10.09 11.38 9.26 9.42 11.61 9.26 10.15 12.01 13.98 16.40%
M@10 10.47 9.01 10.70 11.26 12.57 10.58 10.59 13.00 10.27 1.31 13.23 15.38 16.25%
M@20 10.86 9.70 11.48 11.98 13.31 11.35 11.30 13.81 10.89 11.99 13.97 16.18 15.82%

Trivago

H@5 0 7.89 12.89 13.11 11.97 14.15 11.01 14.58 9.00 10.06 12.34 15.80 8.37%
H@10 0 14.03 18.02 17.13 15.91 20.10 15.00 20.13 11.65 14.05 16.63 22.95 14.01%
H@20 0 20.69 23.84 21.49 20.13 26.21 19.43 26.39 14.39 18.65 21.45 31.18 18.15%
M@5 0 2.65 7.57 8.09 7.42 7.76 6.60 8.79 5.69 6.00 7.58 9.05 2.96%
M@10 0 3.47 8.25 8.62 7.94 8.55 7.13 9.53 6.04 6.53 8.14 10.00 4.93%
M@20 0 3.93 8.65 8.92 8.24 8.97 7.43 9.96 6.24 6.85 8.48 10.56 6.02%

where N is the number of test sessions and nhit is the
number of cases that the ground truth is included in the
top K list.

• M@K:It is the average of reciprocal ranks of the desired
items, which is the evaluation of ranked results. When the
rank is larger than k, the reciprocal rank is set to zero.

M@K =
1

N

∑
v′∈Stest

1

Rank(v′)
(22)

where v′ is the ground truth and Stest is the recommended
list of the test dataset.

4) Hyperparameters: The hyperparameters for all methods
in comparison are tuned on the validation set via gird search.
For all methods, we use Adam as the model optimizer, tuned
the learning rate in [0.001, 0.003, 0.005, 0.008, 0.01] and the
dropout rate in [0, 0.1, 0.2, 0.3, 0.4, 0.5]. Furthermore, in our
PyTorch implementation of the neural network models, the
parameters are initialized the same with [12], the embedding
size is d = 100, the mini-batch size is 512, and the largest
number of epochs is 50 for fair comparison. Following [9],
the normalized weight wk is set to 12 on three datasets.

B. Overall Performances

We first compare the top-K recommendation performance
with other state-of-the-art methods and set K = [5, 10, 20]
to evaluate the performance. Tab. III shows our experimental
results which lead to the following findings.

First, our proposed EMBSR method consistently outper-
forms all the baselines on three datasets, which clearly demon-
strates the effectiveness of utilizing not only the sequential
patterns but also the explicit (dyadic) relational patterns of
user micro-behaviors. Compared with those macro-behavior
models, EMBSR goes further to take into account the user’s
micro-behavior operations which have finer granularity and
provide a deeper understanding of the user. Compared with the
other micro-behavior models, EMBSR works as it exploits the
pairwise semantics of micro-behaviors by encoding and exam-
ining their dyadic relations directly rather than just relying on

the sequential patterns. According to the Wilcoxon signed-rank
test, the performance improvements brought by our proposed
EMBSR over the best performing baselines are statistically
significant with the p-values � 0.01 on all datasets.

Second, Deep-learning approaches in general achieve much
better performances than traditional methods, such as SKNN.
Despite the recent improvements made to such non-neural
models, they are still limited in detecting and exploiting useful
patterns in sessions. Moreover, we can observe that S-POP
method completely fails on Trivago, which means that the
ground truth item rarely appears in the session. We believe
that it is why EMBSR has different improvements on two
metrics of the three datasets. For Trivago, since the ground
truth is not included in the session, the proposed model needs
more ability to find it, leading to a huge improvement in H@K.
For Appliances and Computers, the information of the ground
truth is easier to find; our model is able to give it a higher
score to improve the ranking performance.

Third, GNN-based models (SRGNN, GCSAN, SGNN-HN,
and MKM-SR) in general outperform the RNN-based models
(NARM, RIB, HUP) and the attention-based models (STAMP,
BERT4Rec), testifying the superior capacity of GNN in mod-
eling session information. SGNN-HN has the second best
performance in most cases, which verifies the effectiveness
of SGNN on modeling the complex transition relationship of
macro-items. In addition, MKM-SR can outperform SRGNN
in most cases, showing that incorporating the micro-behavior
by RNN can also improve the performance as MKM-SR
considers micro-operation based on the same GNN structure.
Nevertheless, our proposed EMBSR outperforms all those
GNN baselines with a large margin, suggesting that two
patterns of micro-behavior encoded by EMBSR probably have
captured the most useful information.

C. Ablation Studies

In order to measure the contribution from the different
components of the proposed model, we contrast it with three

TABLE IV
PERFORMANCES (%) OF ABLATION STUDIES.

Method JD-Appliances JD-Computers Trivago

H@10 H@10 M@10 M@20 H@10 H@20 M@10 M@20 H@10 H@20 M@10 M@20

EMBSR-NS 46.73 59.32 21.12 22.00 32.19 43.85 12.51 13.32 23.04 31.74 9.76 10.36
EMBSR-NG 46.78 59.43 19.04 19.92 32.04 44.02 11.91 12.74 22.19 30.52 9.96 10.53
EMBSR-NF 48.99 60.79 25.60 26.42 15.17 33.35 44.66 15.96 9.90 20.56 26.80 10.33
EMBSR 49.57 61.64 25.21 26.07 34.75 46.29 15.38 16.18 22.95 31.18 10.00 10.56

Applicances Computers
H@10

10

20

30

40

50 SGNN-Self
SGNN-Seq-Self
RNN-self
EMBSR

Applicances Computers
M@10

0

5

10

15

20

25 SGNN-Self
SGNN-Seq-Self
RNN-self
EMBSR

Applicances Computers
H@20

10

20

30

40

50

60 SGNN-Self
SGNN-Seq-Self
RNN-self
EMBSR

Applicances Computers
M@20

0

5

10

15

20

25 SGNN-Self
SGNN-Seq-Self
RNN-self
EMBSR

Fig. 4. Performance (%) comparison to assess the utility of the sequential pattern of micro-behaviors.

Applicances Computers
H@10

10

20

30

40

50 SGNN-Self
SGNN-Abs-Self
SGNN-Dyadic
EMBSR

Applicances Computers
M@10

0

5

10

15

20

25 SGNN-Self
SGNN-Abs-Self
SGNN-Dyadic
EMBSR

Applicances Computers
H@20

10

20

30

40

50

60 SGNN-Self
SGNN-Abs-Self
SGNN-Dyadic
EMBSR

Applicances Computers
M@20

0

5

10

15

20

25 SGNN-Self
SGNN-Abs-Self
SGNN-Dyadic
EMBSR

Fig. 5. Performance (%) comparison to assess the utility of the dyadic relation pattern of micro-behaviors.

ablated versions and set K = [10, 20] to evaluate the perfor-
mance:

• EMBSR-NS removes the operation-aware self-attention
layer and only encodes the sequential pattern of micro-
behaviors for the task.

• EMBSR-NG removes the entire GNN Layer, including
the GRU layer for micro-operation sequence, and only
encoding the dyadic relational pattern of micro-behaviors
for the task.

• EMBSR-NF removes the fusion gate network for the
final representation, while we directly concatenate these
two embeddings and feed it into an MLP for the repre-
sentation of the session

Tab. IV presents the results of the ablation studies for
three datasets. In Appliances and Computers, EMBSR-NS and
EMBSR-NG yield the worst performance, confirming that only
modeling a single pattern of the session cannot fully capture
the user’s real intent and preference; In comparison, EMBSR-
NS is in general slightly better than EMBSR-NG, especially
on M@K, proving that the GNN-based model incorporating

the sequential patter of micro-behaviors has indeed helped
to make better predictions; EMBSR-NF in general has the
second best performance, which has further demonstrated the
effectiveness of explicitly modeling two different patterns of
micro-behaviors since it only uses another way to generate the
representation of the session by these two patterns.

In Trivago, the results are slightly more complicated.
EMBSR-NF generally yields the worst performance, while
EMBSR-NS and EMBSR-NR both deliver the competitive
performance, indicating that the correct fusion mechanism
is also essential in the dataset. Therefore, the fact that the
full EMBSR model in general performs best confirms the
advantages of fusing different representations by the fusion
gating network.

D. Utility of Sequential Patterns

To understand the impact of the sequential pattern, we
choose the Appliances and Computers datasets for further
investigation since they have more types of micro-operations.
Since the motivation of this paper is to utilize the micro-
behaviors to help improve the recommendation quality on

0 0.2 0.4 0.6 0.8 1.0
H@10

46

47

48

49

0 0.2 0.4 0.6 0.8 1.0
M@10

23

24

25

0 0.2 0.4 0.6 0.8 1.0
H@20

59

60

61

Absolute Fusion Gating

0 0.2 0.4 0.6 0.8 1.0
M@20

24

25

26

(a) JD-Appliances

0 0.2 0.4 0.6 0.8 1.0
H@10

32

33

34

0 0.2 0.4 0.6 0.8 1.0
M@10

13

14

15

0 0.2 0.4 0.6 0.8 1.0
H@20

44

45

46

Absolute Fusion Gating

0 0.2 0.4 0.6 0.8 1.0
M@20

14

15

16

(b) JD-Computers

Fig. 6. Performance (%) comparison to assess the utility of the fusion gating mechanism.

items, we also design three variants to investigate the way
of incorporating the different patterns of micro-behaviors:
• SGNN-Self uses the star graph without GRU and a

standard self-attention mechanism. It has no information
of micro-behaviors and can only learn the representation
of the session by macro-items.

• SGNN-Seq-Self encodes the information of sequential
pattern on the SGNN with GRU based on SGNN-Self.

• RNN-Self replaces the whole GNN layer with an RNN
layer compared with SGNN-Self. It directly concatenates
the item embedding and operation embedding of the
initial session and feeds them to the RNN for learning
the sequential pattern of micro-behaviors.

Fig. 4 illustrates the result of the comparison. We see
that EMBSR achieves the best performance in all cases. As
for the variants, SGNN-Seq-Self in general performs better
than SGNN-Self. We attribute this to the sequential pattern
of micro-behaviors, which are related to users’ preference
of the macro-items. However, the RNN-based method, RNN-
Self, performs worst in most cases, especially on M@10 and
M@20. Although it also includes the micro-operations infor-
mation, only a simple encoding method based on RNN cannot
capture the complex transition pattern of macro-items and
make full use of micro-behavior information. Thus, EMBSR
presents an approach to encode the sequential pattern of micro-
behaviors in GNN, including a novel method to convert a
session into a multigraph, which is able to model the user’s
real intention and preference.

E. Utility of Dyadic Relational Patterns
To demonstrate the impact of dyadic encoding, we compare

the experimental results with two other variants:
• SGNN-Abs-Self replaces operation-aware self-attention

and dyadic encoding with standard self-attention and
absolute operation embedding.

• SGNN-Dyadic encodes dyadic relational patterns but
only uses SGNN for macro-items without RNN.

We also add SGNN-Self and EMBSR for a clear compar-
ison. As illustrated in Fig. 5, we observe that RNN-Self has
achieved the worst performance again since it does not have
any micro-behavior information. Moreover, SGNN-Dyadic
outperforms SGNN-Abs-Self in all cases. Here, SGNN-Abs-
Self encodes the micro-behaviors by a simple way that
adds the absolute operation embedding in a standard self-
attention network. It cannot capture pair-wise semantic of
the micro-operations well, which is important to understand
the difference between two behaviors. Furthermore, there
are some surprising improvements about the performance of
SGNN-Dyadic, which is lack of sequential patterns of micro-
behaviors, but still achieves competitive results, especially on
M@K of Computers. This indicates that the dyadic relational
pattern, which has never been exploited or discussed in SR, is
essential to model the user’s real preference on the item.

F. Utility of Fusion Gating Mechanism

In order to investigate the utility of the fusion gating mecha-
nism in equation 18, we tune β in {0, 0.2, 0.4, 0.6, 0.8, 1} and
use it as an absolute weight to control the fusion of different
information. Specifically, xt represents the recent interest of
the user, but zs has both sequential and dyadic encoding
information. β controls what information is used to generate
the final representation.

As illustrated in Fig. 6, it is reasonable to infer that how
to select the information is crucial to the final performance.
When β = 0, we only use the recent interest xt, and it achieves
the worst performance, evidencing that only the recent interest
cannot fully express the user’s preference. When β = 1, the
result is competitive since zs has considered all information
of micro-behaviors within the session. However, due to too
much information, it may not be able to capture the user’s

SGNN-Self: not in Top 20
Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

SGNN-Seq-Self: Rank 11th

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
SGNN-Dyadic: Rank 3rd

Ground truth:Prediction MP2

MP1 MP2 MP3 MP2 MP4M1 M1 M2 M3H1 K1

M4K2 K1 K3 K4 MP1M4K2 K1 K4

MP2M4 M5K1 K5 MP2 MP5 MP6MP1 MP3

EMBSR: Rank 1st

Macro-items Micro-operations

MP M H K

Mouse Pad Mouse Headset Keyboard Browse from
searched results

Browse from
category page

Read
specification

Add to CartRead
Comments

Fig. 7. A case for the session-based recommendation with the micro-behavior.

recent interest. Thus, a simple way for the information fusion
with an absolute β can achieve better performance. Moreover,
the final result is not always sensitive to β, since the learning
process can automatically adapt to achieve a better result. The
proposed fusion gating network avoids the choice of β, and
has the best results in general.

G. Case Study

Fig. 7 illustrates a real case from ”Computers” dataset to
demonstrate the rationality of our proposed framework. This
session has a total of 20 micro-behaviors on 11 macro items.
The bottom part is the prediction results of three variants
(SGNN-Self, SGNN-Seq-Self, SGNN-Dyadic) and EMBSR
for this session. We also list the top five items that each method
recall and can observe that:

(1) The macro-item sequence only reflect the coarse-grained
preference of the user. From the item sequence of the case,
we can infer that the user tends to pick out one computer
accessory. In general, the recent items have more impacts on
the next click [6]. Therefore, the top five items recommended
by the SGNN-Self are all keyboards since the last item is a
keyboard. However, the keyboard is far from the user’s real
intention, resulting in the failed recall of SGNN-Self.

(2) Micro-behaviors play a significant role in understanding
users’ fine-grained preferences for items. In this case, the user
has obvious signals for the mouse pad. For MP2 and MP3, the
user reads the detail specification and comments after click,
and finally adds MP2 to the shopping cart. Therefore, SGNN-
Seq-Self, SGNN-Dyadic, and EMBSR successfully recall the
MP2 in the top 20 since they all have considered the micro-
operation signals. Moreover, EMBSR integrates sequential
patterns with dyadic relational patterns, which enables the

model to capture the real intention of the user. As we can see,
the top five items recalled by EMBSR are all mouse pads.
Noting that MP2, MP5, and MP6 are the same items with
different sizes (medium, small and large, respectively), which
proves that EMBSR understands the user’s preferences and
accurately captures the similarities among items.

VI. CONCLUSIONS

In this paper, we propose a novel approach to SR —
EMBSR — which considers not only the sequential patterns
but also the dyadic relational patterns of micro-behaviors
within each session. Specifically, we have designed a graph
neural network to aggregate the sequence of micro-behaviors,
and developed an operation-aware self-attention mechanism
to extract the pair-wise semantics of micro-behaviors. Our ex-
periments have demonstrated that the proposed EMBSR model
significantly outperforms all state-of-the-art SR methods. For
future work, it would be interesting to investigate how to
exploit other operations that are for all items such as filtering
and sorting to further improve the performance of SR systems,
and whether it would be beneficial to weight, or filter, micro-
behavior operations according to their importance.

ACKNOWLEDGMENT

This work was supported by NSFC grants (No. 62136002
and 61972155), National Key R&D Program of China (No.
2021YFC3340702), the Science and Technology Commis-
sion of Shanghai Municipality (20DZ1100300) and the Open
Project Fund from Shenzhen Institute of Artificial Intelligence
and Robotics for Society, under Grant No. AC01202005020,
Shanghai Trusted Industry Internet Software Collaborative
Innovation Center.

REFERENCES

[1] H. Garcia-Molina, G. Koutrika, and A. Parameswaran,
“Information seeking: Convergence of search, recom-
mendations, and advertising,” Communications of the
ACM, vol. 54, no. 11, pp. 121–130, Nov 2011.

[2] D. Jannach, L. Lerche, and M. Jugovac, “Adaptation and
evaluation of recommendations for short-term shopping
goals,” in RecSys, 2015, pp. 211–218.

[3] M. Quadrana, P. Cremonesi, and D. Jannach, “Sequence-
aware recommender systems,” CSUR, vol. 51, no. 4, pp.
1–36, 2018.

[4] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme,
“Factorizing personalized Markov chains for next-basket
recommendation,” in WWW, 2010, pp. 811–820.

[5] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neu-
ral attentive session-based recommendation,” in CIKM.
ACM, 2017, pp. 1419–1428.

[6] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “STAMP:
Short-term attention/memory priority model for session-
based recommendation,” in KDD. ACM, 2018, pp.
1831–1839.

[7] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan,
“Session-based recommendation with graph neural net-
works,” in AAAI, vol. 33, 2019, pp. 346–353.

[8] C. Xu, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, F. Zhuang,
J. Fang, and X. Zhou, “Graph contextualized self-
attention network for session-based recommendation,” in
IJCAI, 2019, pp. 3940–3946.

[9] Z. Pan, F. Cai, W. Chen, H. Chen, and M. de Rijke, “Star
graph neural networks for session-based recommenda-
tion,” in CIKM, 2020, pp. 1195–1204.

[10] M. Zhou, Z. Ding, J. Tang, and D. Yin, “Micro behav-
iors: A new perspective in e-commerce recommender
systems,” in WSDM, 2018, pp. 727–735.

[11] Y. Gu, Z. Ding, S. Wang, and D. Yin, “Hierarchical
user profiling for e-commerce recommender systems,” in
WSDM, 2020, pp. 223–231.

[12] W. Meng, D. Yang, and Y. Xiao, “Incorporating user
micro-behaviors and item knowledge into multi-task
learning for session-based recommendation,” in SIGIR,
2020, pp. 1091–1100.

[13] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning
phrase representations using RNN encoder-decoder for
statistical machine translation,” in EMNLP, A. Moschitti,
B. Pang, and W. Daelemans, Eds. ACL, 2014, pp. 1724–
1734.

[14] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention
with relative position representations,” in NAACL-HLT,
Volume 2 (Short Papers). New Orleans, Louisiana: ACL,
Jun. 2018, pp. 464–468.

[15] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix
factorization,” in NeurIPS, 2008, pp. 1257–1264.

[16] Y. Koren and R. Bell, “Advances in collaborative fil-
tering,” in Recommender systems handbook. Springer,

2015, pp. 77–118.
[17] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,

“Item-based collaborative filtering recommendation algo-
rithms,” in WWW, 2001, pp. 285–295.

[18] I. Kamehkhosh, D. Jannach, and M. Ludewig, “A
comparison of frequent pattern techniques and a deep
learning method for session-based recommendation.” in
RecTemp@ RecSys, 2017, pp. 50–56.

[19] D. Jannach and M. Ludewig, “When recurrent neural
networks meet the neighborhood for session-based rec-
ommendation,” in RecSys, 2017, pp. 306–310.

[20] D. Garg, P. Gupta, P. Malhotra, L. Vig, and G. Shroff,
“Sequence and time aware neighborhood for session-
based recommendations: Stan,” in SIGIR, 2019, pp.
1069–1072.

[21] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk,
“Session-based recommendations with recurrent neural
networks,” in ICLR, 2016.

[22] Y. K. Tan, X. Xu, and Y. Liu, “Improved recurrent neural
networks for session-based recommendations,” in DLRS.
ACM, 2016, pp. 17–22.

[23] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and
P. Jiang, “BERT4Rec: Sequential recommendation with
bidirectional encoder representations from transformer,”
in CIKM, 2019, p. 1441–1450.

[24] M. Wang, P. Ren, L. Mei, Z. Chen, J. Ma, and M. de Ri-
jke, “A collaborative session-based recommendation ap-
proach with parallel memory modules,” in SIGIR, ser.
SIGIR’19, 2019, p. 345–354.

[25] A. Luo, P. Zhao, Y. Liu, F. Zhuang, D. Wang, J. Xu,
J. Fang, and V. S. Sheng, “Collaborative self-attention
network for session-based recommendation,” in IJCAI,
2020, pp. 2591–2597.

[26] R. Qiu, J. Li, Z. Huang, and H. Yin, “Rethinking the
item order in session-based recommendation with graph
neural networks,” in CIKM, 2019, pp. 579–588.

[27] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Liò, and Y. Bengio, “Graph attention networks,” in
ICLR, 2018.

[28] T. Chen and R. C.-W. Wong, “Handling information loss
of graph neural networks for session-based recommen-
dation,” in KDD, 2020, pp. 1172–1180.

[29] Z. Wang, W. Wei, G. Cong, X.-L. Li, X.-L. Mao, and
M. Qiu, “Global context enhanced graph neural networks
for session-based recommendation,” in SIGIR, 2020, pp.
169–178.

[30] X. Xia, H. Yin, J. Yu, Q. Wang, L. Cui, and X. Zhang,
“Self-supervised hypergraph convolutional networks for
session-based recommendation,” in AAAI, vol. 35, no. 5,
2021, pp. 4503–4511.

[31] C. Gao, X. He, D. Gan, X. Chen, F. Feng, Y. Li, T.-
S. Chua, L. Yao, Y. Song, and D. Jin, “Learning to
recommend with multiple cascading behaviors,” IEEE
TKDE, 2019.

[32] A. P. Singh and G. J. Gordon, “Relational learning via
collective matrix factorization,” in KDD, 2008, pp. 650–

658.
[33] Q. Liu, S. Wu, and L. Wang, “Multi-behavioral sequen-

tial prediction with recurrent log-bilinear model,” IEEE
TKDE, vol. 29, no. 6, pp. 1254–1267, 2017.

[34] A. Mnih and G. Hinton, “Three new graphical models
for statistical language modelling,” in ICML, 2007, pp.
641–648.

[35] M. Wan and J. McAuley, “Item recommendation on
monotonic behavior chains,” in RecSys, 2018, pp. 86–
94.

[36] C. Lo, D. Frankowski, and J. Leskovec, “Understanding
behaviors that lead to purchasing: A case study of
pinterest,” in KDD, 2016, pp. 531–540.

[37] R. Olbrich and C. Holsing, “Modeling consumer pur-
chasing behavior in social shopping communities with
clickstream data,” International Journal of Electronic
Commerce, vol. 16, no. 2, pp. 15–40, 2011.

[38] S. Yehezki and A. Dhini, “Classifying purchase decision
based on user clickstream in e-commerce using web
usage mining,” in Proc. Int. Conf. Bus. Inf.Manage.,
2017, pp. 57–61.

[39] B. Loni, R. Pagano, M. Larson, and A. Hanjalic,
“Bayesian personalized ranking with multi-channel user
feedback,” in RecSys, 2016, pp. 361–364.

[40] G. Guo, H. Qiu, Z. Tan, Y. Liu, J. Ma, and X. Wang,
“Resolving data sparsity by multi-type auxiliary implicit
feedback for recommender systems,” Knowledge-Based
Systems, vol. 138, pp. 202–207, 2017.

[41] H. Qiu, Y. Liu, G. Guo, Z. Sun, J. Zhang, and H. T.
Nguyen, “Bprh: Bayesian personalized ranking for het-
erogeneous implicit feedback,” Information Sciences, vol.
453, pp. 80–98, 2018.

[42] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel,
“Gated graph sequence neural networks,” in ICLR, 2016.

[43] R. K. Srivastava, K. Greff, and J. Schmidhuber, “High-
way networks,” arXiv preprint arXiv:1505.00387, 2015.

[44] J. Yuan, Z. Song, M. Sun, X. Wang, and W. X. Zhao,
“Dual sparse attention network for session-based recom-
mendation,” in AAAI, vol. 35, no. 5, 2021, pp. 4635–
4643.

[45] P. Gupta, D. Garg, P. Malhotra, L. Vig, and G. Shroff,
“Niser: Normalized item and session representations to
handle popularity bias,” arXiv, pp. arXiv–1909, 2019.

[46] Y. Zheng, D. K. Pal, and M. Savvides, “Ring loss:
Convex feature normalization for face recognition,” in
CVPR, 2018, pp. 5089–5097.

[47] Z. Wang, C. Chen, K. Zhang, Y. Lei, and W. Li, “Vari-
ational recurrent model for session-based recommenda-
tion,” in CIKM, 2018, pp. 1839–1842.

Supplemental Materials
I. ADDITIONAL EXPERIMENTS

A. Optimal performance for macro-behavior baselines

Since most of existing methods of session-based recom-
mendation are designed for the sequence of macro item,
the performance of macro-behavior baselines utilizing micro-
behavior may not be able to reach their optimal performance
if there are a large number of operations which are treated
equally. Therefore, we have identified one type of operation
and used that to redefine the sequence of items for the
additional experiment. Since most methods for SR use the
clickstream data, we only keep the click-related data in two JD
datasets and ”click-outs” data in Trivago for macro-behavior
baselines. Meanwhile, we add other operations to the sequence
while ensuring that the ground truth of each sequence is
consistent for a fair comparison with our proposed approach.

The result is reported in Tab. I, we compare EMBSR
with the best baseline SGNN-HN and the typical baseline
BERT4Rec. This table shows similar patterns with using all
operations for macro-behavior models. In addition, we have
achieved a considerable improvement on Trivago. Intuitively,
EMBSR that are able to exploit the information embedded in
all the operations does work better than those that are restricted
to utilize only some of the operations. Macro-behavior models
do have many limitations.

Furthermore, assigning different importance weights to dif-
ferent operations is probably more a promising way than
simply discarding some insignificant operations. It is indeed an
interesting question whether it would be beneficial to weight,
or filter, micro-behavior operations according to their impor-
tance. Besides, the importance of micro-behavior operations
may be not static but vary in different sequences or at different
positions. This line of thoughts, though interesting, would
make the model much more complicated than its current form.
We have to leave the bulk of experiments for the future work.

B. Dyadic relational encoding with SGNN-HN

In Section V-E (Figure 5), we do witness the high utility of
dyadic relational patterns for recommendation effectiveness. In
fact, SGNN-Dyadic is the model that we isolate the idea of
dyadic encoding to the best macro-behavior baseline SGNN-
HN, which has achieved the competitive results. We have
reported their performances on two JD datasets in Tab. II here.
From this table, we observe that EMBSR-Dyadic outperforms
SGNN-HN, except for H@10 and H@20 on Appliances,
further confirming the importance of the dyadic relationship
and the generalizability of the proposed idea. In addition,
EMBSR still achieves a large improvement, showing that the
proposed encoding scheme that transforms a session into a
directed multigraph and the novel aggregation stage are more
suitable for micro-behavior encoding.

C. Top Ranked Results

In order to more comprehensively evaluate the performance
of our proposed EMBSR, we have reported the result of

TABLE I
PERFORMANCES (%) OF DEFINING THE SEQUENCE OF ITEMS WITH THE

SINGLE TYPE OF OPERATION.

Datasets Metrics BERT4Rec SGNN-HN EBMSR Imp

Appliances

H@5 30.16 34.95 37.41 7.04%
H@10 41.50 47.17 49.76 5.49%
H@20 52.97 59.56 62.00 4.97%
M@5 16.54 21.34 23.74 11.25%
M@10 18.05 22.96 25.40 10.63%
M@20 18.85 23.82 26.25 10.20%

Computers

H@5 17.54 21.34 24.23 13.54%
H@10 26.67 31.93 34.91 9.33%
H@20 37.11 43.72 46.50 6.36%
M@5 8.81 11.49 13.83 20.37%
M@10 10.02 12.89 15.24 18.23%
M@20 10.74 13.71 16.04 16.99%

Trivago

H@5 13.98 17.21 25.03 45.44%
H@10 17.51 22.69 29.89 31.73%
H@20 20.48 27.94 34.92 24.98%
M@5 8.57 10.72 18.97 76.96%
M@10 9.04 11.44 19.61 71.42%
M@20 9.25 11.81 19.96 69.01%

TABLE II
PERFORMANCES (%) OF APPLYING THE DYADIC ENCODING TO

SGNN-HN.

Datasets Metrics SGNN-HN EMBSR-Dyadic EBMSR

Appliances

H@5 34.80 35.64 37.34
H@10 47.04 46.36 49.57
H@20 59.36 56.94 61.64
M@5 21.00 22.98 23.58
M@10 22.64 24.41 25.21
M@20 23.49 25.15 26.06

Computers

H@5 21.53 23.09 24.17
H@10 32.01 32.99 34.75
H@20 43.67 43.92 46.29
M@5 11.61 13.28 13.98
M@10 13.00 14.59 15.38
M@20 13.81 15.35 16.18

top 1,3,5 in Tab. III. From this table, we can observe that
the performances of top 1, 3, and 5 results exhibit similar
patterns with top 10, and 20. It is worth noting that there is
no difference between H@1 and M@1, so they have the same
values. In addition, as we analyzed in the paper, since the
ground truth is not included in the input session, our proposed
approach has not achieved the best performance on Trivago
when K = 1.

TABLE III
PERFORMANCES (%) OF K = [1, 3, 5]. THE HIGHEST SCORES ARE BOLDFACED; THE 2ND HIGHEST SCORES ARE UNDERLINED.

Datasets Metrics S-POP SKNN NARM STAMP SR-GNN GC-SAN BERT4Rec SGNN-HN RIB HUP MKM-SR EMBSR Imp.

Appliances

H@1 9.38 6.97 10.84 11.39 12.46 11.05 9.15 13.48 9.65 10.02 13.49 16.06 19.05%
H@3 23.45 17.49 23.20 23.41 25.13 22.91 23.07 26.67 22.73 23.93 26.32 29.24 9.64%
H@5 31.66 25.06 30.94 30.74 32.65 30.36 31.02 34.80 30.12 31.91 33.82 37.34 7.30%
M@1 9.38 6.97 10.84 11.39 12.46 11.05 9.15 13.48 9.65 10.02 13.49 16.06 19.05%
M@3 15.42 11.42 16.14 16.54 17.92 16.14 15.15 19.15 15.29 16.02 19.03 21.74 13.52%
M@5 17.29 13.15 17.90 18.21 19.63 17.83 16.96 21.00 16.97 17.83 20.73 23.58 12.29%

Computers

H@1 5.27 4.21 4.79 5.86 6.80 4.32 4.95 6.46 5.17 5.52 7.24 8.64 19.34%
H@3 12.60 10.35 12.62 13.07 14.66 12.72 12.58 15.22 12.24 13.54 15.43 17.78 15.23%
H@5 17.18 15.11 18.31 18.18 20.08 18.79 17.90 21.53 16.93 18.87 21.00 24.17 12.26%
M@1 5.27 4.21 4.79 5.86 6.80 4.32 4.95 6.46 5.17 5.52 7.24 8.64 19.34%
M@3 8.41 6.82 8.11 8.94 10.15 7.88 8.21 10.18 8.19 8.94 10.75 12.54 16.65%
M@5 9.45 7.89 9.40 10.09 11.38 9.26 9.42 11.61 9.26 10.15 12.01 13.98 16.40%

Trivago

H@1 0 0.05 4.68 5.31 4.87 4.39 4.20 5.64 3.80 3.81 4.95 5.49 -2.66%
H@3 0 4.34 9.73 10.19 9.43 10.19 8.37 11.14 7.20 7.61 9.57 11.62 4.31%
H@5 0 7.89 12.89 13.11 11.97 14.15 11.01 14.58 9.00 10.06 12.34 15.80 8.37%
M@1 0 0.05 4.68 5.31 4.87 4.39 4.20 5.64 3.80 3.81 4.95 5.49 -2.66%
M@3 0 1.85 6.85 7.42 6.84 6.85 6.00 8.01 5.28 5.44 6.94 8.10 1.12%
M@5 0 2.65 7.57 8.09 7.42 7.76 6.60 8.79 5.69 6.00 7.58 9.05 2.96%

	I Introduction
	II Preliminaries
	II-A Graph Neural Network
	II-B Problem Statement

	III Related Work
	III-A Session-based Recommendation
	III-B Micro-Behaviors in Recommendation

	IV APPROACH
	IV-A Model Overview
	IV-B Encoding Sequential Patterns
	IV-B1 Graph Construction
	IV-B2 Initialization of Node Embedding
	IV-B3 Sequential Information of Micro-Operation
	IV-B4 Aggregation Stage
	IV-B5 Update Stage

	IV-C Encoding Dyadic Relational Patterns
	IV-C1 Dyadic Micro-Operation Encoding
	IV-C2 Operation-Aware Self-Attention Mechanism

	IV-D Session Representation and Prediction

	V Experiments
	V-A Settings
	V-A1 Datasets
	V-A2 Baselines
	V-A3 Metrics
	V-A4 Hyperparameters

	V-B Overall Performances
	V-C Ablation Studies
	V-D Utility of Sequential Patterns
	V-E Utility of Dyadic Relational Patterns
	V-F Utility of Fusion Gating Mechanism
	V-G Case Study

	VI Conclusions
	I Additional experiments
	I-A Optimal performance for macro-behavior baselines
	I-B Dyadic relational encoding with SGNN-HN
	I-C Top Ranked Results

